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LETTER TO THE EDITOR 

An exact result for the Kagome lattice Ising model with 
magnetic field 

H Giacominit 
Laboratoire de Magnetisme des Surfaces, Universitt Paris 7, 2 Place Jussieu, 75251 Paris 
Cedex 05. France 

Received 23 October 1987 

Abstract. An anisotropic Ising model with three interaction parameters K , ,  K , ,  K ,  and a 
magnetic field H ,  formulated on the Kagomt lattice, is solved exactly for an appropriate 
relation between K ,  and H .  When this relation is satisfied the system becomes equivalent 
to a free-fermion model. 

There are very few exact results for the two-dimensional Ising model with a magnetic 
field. When the magnetic field H = i.rr/2, exact solutions have been obtained for the 
square lattice (Yang and Lee 1952, McCoy and Wu 1967), for the triangular and 
honeycomb lattices (Baxter 1965) and for a more general Ising model with multispin 
interactions (Wu 1986). Other exact solutions have been obtained by Fisher (1960) 
for a decorated square lattice where the magnetic field interacts only with the decorating 
spins (super-exchange model). 

More recently, a new type of exact result for Ising-type models with magnetic field 
has been found, the so-called disorder solutions (Stephenson 1970, Verhagen 1976, 
Enting 1977a, b, Jaekel and Maillard 1985, Wu 1985, Rujan 1987). For this class of 
solutions the model trivialises because a reduction of dimensionality occurs in such a 
way that it becomes equivalent to a zero- or one-dimensional system. Also, the exact 
solution of the hard-hexagon model (Baxter 1980) represents an important result for 
the Ising model. This lattice gas system is a particular case of the triangular lattice 
Ising model with a magnetic field. 

In this letter an exact solution for an anisotropic Ising model with a magnetic field, 
formulated on the KagomC lattice ( K L ) ,  is outlined. The Boltzmann weight of the 
model, associated with the elementary cell of the KL, is as follows: 

W(a1, ( + 2 ,  a 3 ,  (+4, a51  

= exp[Kla5(a2+a4)  + K2c+5(a, + (+3) + K3(ala2+a3a4)  

+ Ha5 + H / 2 (  U1 + (+z + U3 + a d ) ]  (1) 

where the Ising spins a, and the interaction parameters Ki  are depicted in figure 1. 
The partition function of the model is given by 

ZKag(K1 9 K2 9 K 3  9 H ,  = (2) 
(U) 

t On leave from IFIR, Pellegrini 250, 2000 Rosario, Argentina. 
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Figure 1. The Kagomt lattice shown in an elementary cell with the king spins U, associated 
with each site and the three interaction parameters K , ,  K , ,  K , .  

where the sum is performed over all spin configurations and the products are taken 
over all elementary cells of a lattice with 3 N sites and periodic boundary conditions. 

The procedure employed to obtain the exact result mentioned above is very simple. 
It is based on the anisotropic generalisation of the decoration-decimation transforma- 
tion which is used to map the isotropic K L  Ising model with a magnetic field on the 
isotropic honeycomb lattice Ising model with a magnetic field (Syozi 1972). 

As the first step, the K L  is decorated by introducing an Ising spin S, on the centre 
of each elementary triangle of the lattice, as indicated in figure 2 .  In this way the 
Boltzmann weight (1) can be expressed as follows: 

= R ’ exp[ SI ( MI a3 + M z a ,  + M ,  as) + S2( MI a1 + M2a2 + M 3 a 3 )  
SI .s2 

Figure 2. The decorated Kagomt lattice. Full circles indicate the Ising spins U, of the 
original lattice and open circles represent the decorating lsing spins S, and S,. The 
interactions M , ,  M , ,  M ,  between both types of spins are also shown. 
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The parameters Mi and R are related to the K i  by the well known expressions of the 
star-triangle relation (Baxter 1982) 

sinh(2Ki) sinh(2Mi) = a-' i = l , 2 , 3  (4) 

where 

a = ( I +  t:)(1- t$)(1 -t:)[16(1+tlt2t3)(tl+ t 2 t 3 ) ( 1 2 + f l t 3 ) ( 1 3 + t l r 2 ) ] - 1 ' 2  (5) 

with 

t i  = tanh( K ; )  i = l , 2 , 3  

cosh( 2 Mi) = cosh( 2 K,)  cosh(2 K , )  + sinh( 2 K,) coth( 2 K i )  ( 6 )  

and permutations of (6) with respect to i, j, 1 

R 2  = a 2 / 2  sinh(2Kl) sinh(2K2) sinh(2K3). (7) 

The partition function of the KL model can now be expressed in terms of the partition 
function of the decorated model as follows: 

(8) 

In this way the spins ui become decoupled and can be summed up. After the decimation 
of the spins ui, the resulting model is the Ising model on the honeycomb lattice with 
2 N  sites, interaction parameters L , ,  L2, L3 and a magnetic field n. Therefore the 
partition function of the KL model is expressed finally in terms of the partition function 
of the honeycomb lattice model: 

(9) 

exp(4Li) = cosh(2Mi+ H) cosh(2Mi - H ) [ c o ~ h ( H ) ] - ~  i = 1 , 2 , 3  (10) 

(11) 

~ K a g ( ~ 1 ,  ~ 2 ,  ~ 3 , ~ ) = ~ ~ ~ z d e c ( M 1 ,  ~ 2 ,  ~ 3 ,  H ) .  

ZKag(K1r K 2 ,  K3, H)=(R2AlA2A3)NZ,,"e,(LI, L2, L 3 9  

where L ,  , L 2 ,  L3, Al , A2,  A3 and fi are given by 

R = H I  + H,+ H3 

with 

exp(4Hi) = cosh(2Mi + H)[cosh(2Mi - If)]-' i = l , 2 , 3  (12) 

Ai =2[~0sh(2Mi+ H) C O S ~ ( ~ M ,  - H) C O S ~ ~ ( H ) ] ' ' ~  (13) 

When K ,  = K 2  = K ,  (isotropic case) one reobtains the known expressions that relate 
the isotropic KL model with the isotropic honeycomb lattice model, both with magnetic 
field (Syozi 1972). 

Let us recall that the Ising model on the honeycomb lattice is exactly soluble when 
the magnetic field fi = 0 (Syozi 1972) and when R = i v /2  (Baxter 1965). In both cases 
one has 

i = 1,2,3. 

exp(4fi)  = 1. (14) 

Therefore, taking into account (9), the Ising model on the K L  with a magnetic field H 
is exactly soluble when condition (14) is satisfied. Obviously this condition is identically 
satisfied when H = 0, and it is in this form that the partition function of the anisotropic 
KL lattice without magnetic field has been obtained by Kano and Naya (1953). 
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However, and this is the fundamental point of this work, equation (14), when 
expressed in terms of a function of K1 , K , ,  K 3  and H, also has non-trivial and 
interesting solutions with H ZO. By using the relations (4), ( 5 ) ,  (6), (11) and (12), 
and after some algebra, condition (14) can be expressed, for finite H ( H Z O  and 
H Zoo) as 

tanh2( H )  = a2/4[SlS2S3 + C,C,C3+ S, + S 2 +  S3 - exp 4( K I  + K 2 +  K3)1 (15) 

where 

S, = sinh(4K,) C, = cosh(4K,) i = l , 2 , 3  

and a is given by (5). 
It is evident that this equation has the same symmetries as the partition function 

(2), i.e. it is symmetric with respect to K , ,  K 2 ,  K ,  and is invariant under the trans- 
formations H + -H, H + *H + ir and K ,  + K ,  + i1r/2, where each parameter can be 
transformed independently. 

For arbitrary values of K ,  , K 2 ,  K , ,  equation (15) determines a unique value of H 
for which the model can be solved exactly. 

Let us recall that the honeycomb lattice Ising model with H =  0 or fi = i r / 2  is a 
free-fermion model. Very recently it has been shown by Baxter (1986) that the partition 
function of the free-fermion model can be evaluated for lattices of arbitrary size. 
Therefore, when condition (15) is satisfied, the partition function (2) of the K L  model 
can be calculated for arbitrary N .  

When one of the parameters K ,  is taken equal to zero ( K 3  = 0, for example), the 
spins connected by this interaction can be decimated away. After this, the Ising model 
on a square lattice is obtained. However, the resulting magnetic field on this lattice 
is identically null when equation (15) is satisfied. Therefore the result presented in 
this letter cannot be extended to the other regular two-dimensional lattices. It is 
strongly dependent of the particular structure of the K L .  

It is evident from (15) that if K ,  , K 2 ,  K3 are real, the magnetic field H can be real, 
purely imaginary or with an imaginary part equal to i.rr/2. Hence there are solutions 
of (15) in the physical region of the parameter space of the model. 

Complex values of H are also interesting in order to gain some insight into the 
mathematical structure of the partition function. Besides, by using lattice model 
transformations, there exists the possibility to map the non-physical region of the 
present model in the physical region of other types of system. An example of this 
class is furnished by the square lattice Ising model with a magnetic field equal to i r / 2 .  
By a duality transformation this model can be mapped on the 'fully frustrated' Villain 
model. For K , ,  K , ,  K,>0, H is always purely imaginary. On  the other hand, the 
real values of K ,  that give real values of H are arranged in such a way that all the 
elementary triangles of the K L  are frustrated (for the concept of frustration see Toulouse 
(1977)). 

It follows from this result that the system can have critical points when condition 
(15) is fulfilled, because the result of Yang and Lee (1952) about the absence of phase 
transitions for the Ising model with magnetic field does not apply when there are 
antiferromagnetic interactions. 

The magnetic field fl of the honeycomb lattice can take the values 0 or i a / 2  when 
(15) holds, depending on the given values of the parameters K , .  In the isotropic case 
K I  = K 2  = K3 = K condition (15) reduces to 

(16) tanh2(H) = 3[tanh2(2K) - 2  tanh(2K)l- '  
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and for arbitrary real values of K ,  H always take complex values. If K > 0, H is 
purely imaginary and for K CO, H has an imaginary part equal to in/2.  Moreover, 
in this isotropic case, fl only take the value i7r/2 for all real values of K .  

For the general anisotropic situation it is possible, in principle, by using the above 
results, to evaluate the zero-field susceptibility per spin of the K L  model 

a2 
Xo(Ki ,  K2, K3)=(3NltT)-'a~zlog(Z,,,(Ki, K 2 ,  K39 H))IH=o (17) 

where k is the Boltzmann constant and T is the temperature, when the parameters K ,  
satisfy the equation obtained from (15) in the limit H + 0, i.e. 

(18) 

In the more symmetric case K, = K2 this condition can be expressed by means of a 
very simple relation as follows: 

exp[4( K ,  + K 2  + K3)] = C ,  C2C3 + S , S 2 S 3  + S ,  + S2 + S3.  

exp(4K3) = 2(2C, + SI)-'. (19) 

For arbitrary real values of K , ,  the values of K3 obtained from (19) are also real. 
Therefore xo can be exactly evaluated in a physical region of the parameter space of 
the model. 

Moreover, for this case ( K ,  = K 2 )  the magnetic field H obtained from (15) is real 
for arbitrary real values of K ,  if K 3  satisfies the inequality 

4[3 exp(4K,)+exp(-4KI)]-' <exp(4K3) <2[exp(4K1)+ 1]-'. (20) 

A fortunate fact is that, if the zero-field susceptibility ,yo is known for the KL, it can 
also be calculated, through very simple expressions, for the honeycomb and triangular 
lattices (Syozi 1972). Therefore the results of this letter enable us to calculate ,yo for 
the anisotropic KagomC, honeycomb and triangular lattices, when an appropriate 
relation between the interaction parameters of the models is satisfied in each case. 

I t  is worth pointing out that the surface defined by (18) in the parameter space 
K , ,  K2,  K3 is different from the critical variety and the disorder variety of the model 
with H = 0. 

It is obviously also of interest to analyse the critical behaviour of this model in  the 
general anisotropic case, when condition (15) is satisfied. This aspect and an explicit 
evaluation of ,yo under the restriction (18) is now under consideration. 

To summarise, an exact solution of the anisotropic K L  Ising model with a magnetic 
field has been presented. The solution is valid when condition (15) between the 
parameters of the model is satisfied. 

I wish to thank J M Maillard for a critical reading of the manuscript and for very 
useful remarks, and P Azaria for discussions and encouragement. The author is 
supported by a post-doctoral fellowship of CONICET, Argentina. 
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